软件,游戏,APP下载,公益下载:帝一应用

帝一应用手机版|下载排行|最近更新|tags标签汇总

当前位置:首页 - 知识 - 软件知识 - 欧几里得几何攻略104,带角标的欧几里德范数怎么求

欧几里得几何攻略104,带角标的欧几里德范数怎么求

时间:2023-02-12 07:38:59来源:整理作者:佚名投稿 手机版

1,带角标的欧几里德范数怎么求

x是n维向量(x1,x2,…,xn), ||x||=根号(|x1|方+|x2|方+…+|xn|方) 补充:开平方,跟几何一样 Euclidean范数指得就是通常意义上的

带角标的欧几里德范数怎么求

2,欧几里德几何学

欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。欧几里得几何有时单指平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。 高维的情形请参看欧几里得空间。中文名欧几里得几何外文名Euclid geometry作者欧几里得详细分类几何学简称欧氏几何

欧几里德几何学

3,欧几里得的几何原本中第一命题到底有什么逻辑上的缺漏通过已知线

倒像是个定理。然后无数科学家为此公设进行证明,都失败了,有且可以做一条直线与已知直线平行。最后。第五公设简单来说是这样的:过直线外一点,欧几里得的几何原本的第一卷的第五公设的“平行公设”引起了数学界的广泛争议。因为第五公设的说法有些含糊不清,不像是个公设其实是这样的
虽然我很聪明,但这么说真的难到我了

欧几里得的几何原本中第一命题到底有什么逻辑上的缺漏通过已知线

4,欧氏几何有几条公理

记不太准,刚刚我翻阅了一下梁邵鸿教授的《初等数学的复习与研究》,里面是这样介绍的 : 欧几里得几何有七条定义。有五条公设。有八条公理。八条公理如下:1,等于同量的量相等。2,等量加等量其和相等。3,不等量加等量,其和不等。4,等量减等量,其差相等。5,等量的两倍仍相等。6,等量的一半,仍相等。7,能够重合的量相等。8,全体大于部分。

5,欧几里德几何是什么

欧几里德几何(欧式几何)的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。 欧几里德几何的五条公理是: 1、任意两个点可以通过一条直线连接。 2、任意线段能无限延伸成一条直线。 3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。 4、所有直角都全等。 5、若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。 其他还有罗氏几何、黎曼几何,合称非欧几何。
好象是解析几何的创始人 。。 是不是 要是不是 给我告诉下是谁 我回来看。。
经典几何学

6,欧几里得的五个定理

欧几里得的五个定理是:任意两个点可以通过一条直线连接;任意线段能无限延长成一条直线;给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆;所有直角都全等;若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和,则这两条直线在这一边必定相交。欧几里得几何定理是指按照古希腊数学家欧几里得的《几何原本》构造的几何学。欧几里得几何有时单指平面上的几何,即平面几何。三维空间的欧几里得几何通常叫做立体几何。在欧几里德以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,标志着欧氏几何学的建立。

7,欧几里得的几何原本共有十三卷 目录 第一卷 几何基础 问

第一卷 几何基础   第二卷 几何与代数   第三卷 圆与角   第四卷 圆与正多边形   第五卷 比例   第六卷 相似   第七卷 数论(一)   第八卷 数论(二)   第九卷 数论(三)   第十卷 无理量   第十一卷 立体几何   第十二卷 立体的测量   第十三卷 建正多面体   各卷简介   第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是 毕达哥拉斯定理的正逆定理;   第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。   第三卷:讨论了圆与角。   第四卷:讨论圆内接和外切多边形的做法和性质;   第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论   第六卷:讲相似多边形理论;   第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。   第十一卷、十二、十三卷:最后讲述立体几何的内容。   从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。

8,欧几里得的几何原本共有十三卷 目录 第一卷 几何基础

第一卷 几何基础  第二卷 几何与代数  第三卷 圆与角  第四卷 圆与正多边形  第五卷 比例  第六卷 相似  第七卷 数论(一)  第八卷 数论(二)  第九卷 数论(三)  第十卷 无理量  第十一卷 立体几何  第十二卷 立体的测量  第十三卷 建正多面体  各卷简介  第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是 毕达哥拉斯定理的正逆定理;  第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。  第三卷:讨论了圆与角。  第四卷:讨论圆内接和外切多边形的做法和性质;  第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论  第六卷:讲相似多边形理论;  第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。  第十一卷、十二、十三卷:最后讲述立体几何的内容。   从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。

9,什么是欧几里得几何

是几何学的分支,由古希腊数学家欧几里得先生创设。欧式几何是从《几何原本》所叙述的无需证明而直接给出的五大公理和五大公设出发,以三段论演绎推理【大前提-小前提-结论】的方法所建立的一套相对完整,逻辑比较严密的几何理论体系。但由于第五条公设【平行公设】无法在系统内得证,导致在推翻平行公设的情况下出现不同的几何体系,也即【非欧几何】。【平行公设】:每当一条直线与另外两条直线相交,在它一侧做成的两个同侧内角的和小于两直角时,这另外两条直线就在同侧内角和小于两直角的那一侧相交。
简称“欧氏几何”。几何学的一门分科。公元前3世纪,古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何”与“立体几何”。
<p>欧几里得几何简称“欧氏几何”。几何学的一门分科。公元前3世纪,古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何”与“立体几何”。</p> <p><a href="http://wenwen.soso.com/z/urlalertpage.e?sp=shttp%3a%2f%2fbaike.baidu.com%2fview%2f880869.htm%3ffr%3dala0" target="_blank">http://baike.baidu.com/view/880869.htm?fr=ala0</a></p>
你所学几何的就是,在你学习非欧几何时才给你讲欧氏几何的定义你写的译法不正确,正确的是欧几里德几何学http://baike.baidu.com/view/146867.htm?fr=ala0_1_1另外如果你能看懂,可以看看非欧几何http://baike.baidu.com/view/17594.htm?fr=ala0_1_1

10,欧几里得 几何原本 对数学及整个科学发展有什么重要意义其最主要成就

“百科”上很全亚历山大里亚的欧几里得(希腊文:Ευκλειδη? ,约公元前330年—前275年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人《几何原本》的主要内容  欧几里得的《几何原本》共有十三卷。   目录   第一卷 几何基础   第二卷 几何与代数   第三卷 圆与角   第四卷 圆与正多边形   第五卷 比例   第六卷 相似   第七卷 数论(一)   第八卷 数论(二)   第九卷 数论(三)   第十卷 无理量   第十一卷 立体几何   第十二卷 立体的测量   第十三卷 建正多面体   各卷简介   第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是 毕达哥拉斯定理的正逆定理;   第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。   第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。   第四卷:讨论圆内接和外切多边形的做法和性质;   第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是"最重要的数学杰作之一"   第六卷:讲相似多边形理论,并以此阐述了比例的性质。   第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。   第十一卷、十二、十三卷:最后讲述立体几何的内容.   从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。编辑本段《几何原本》的意义和影响  在几何学上的影响和意义   在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这 欧几里得种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。并且《几何原本》中的命题1.47,证明了是欧几里德最先发现的勾股定理,从而说明了欧洲是最早发现勾股定理的大洲。   论证方法上的影响   关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。   作为教材的影响   从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。   (牛顿的例子)   少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。   《原本》的缺憾   但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。

11,欧几里德几何原本中勾股定理证明详细过程

证法5(欧几里得的证法) 《几何原本》中的证明 在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△abc为一直角三角形,其中a为直角。从a点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。 在正式的证明中,我们需要四个辅助定理如下: 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(sas定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。 其证明如下: 设△abc为一直角三角形,其直角为cab。 其边为bc、ab、和ca,依序绘成四方形cbde、bagf和acih。 画出过点a之bd、ce的平行线。此线将分别与bc和de直角相交于k、l。 分别连接cf、ad,形成两个三角形bcf、bda。 ∠cab和∠bag都是直角,因此c、a 和 g 都是线性对应的,同理可证b、a和h。 ∠cbd和∠fba皆为直角,所以∠abd等于∠fbc。 因为 ab 和 bd 分别等于 fb 和 bc,所以△abd 必须相等于△fbc。 因为 a 与 k 和 l是线性对应的,所以四方形 bdlk 必须二倍面积于△abd。 因为c、a和g有共同线性,所以正方形bagf必须二倍面积于△fbc。 因此四边形 bdlk 必须有相同的面积 bagf = ab^2。 同理可证,四边形 ckle 必须有相同的面积 acih = ac^2。 把这两个结果相加, ab^2+ ac^2; = bd×bk + kl×kc 。由于bd=kl,bd×bk + kl×kc = bd(bk + kc) = bd×bc 由于cbde是个正方形,因此ab^2 + ac^2= bc^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的
证法5(欧几里得的证法)  《几何原本》中的证明   在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。   在正式的证明中,我们需要四个辅助定理如下:   如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。   其证明如下:   设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的来自http://wenwen.sogou.com/z/q871353041.htm?qbl=relate_question_4

12,欧几里德急需

欧几里得(Euclid)是古希腊著名数学家、欧氏几何学的开创者。欧几里得生于雅典,当时雅 欧几里得典就是古希腊文明的中心。浓郁的文化气氛深深地感染了欧几里得,当他还是个十几岁的少年时,就迫不及待地想进入“柏拉图学园”学习。   一天,一群年轻人来到位于雅典城郊外林荫中的“柏拉图学园”。只见学园的大门紧闭着,门口挂着一块木牌,上面写着:“不懂数学者,不得入内! ”这是当年柏拉图亲自立下的规矩,为的是让学生们知道他对数学的重视,然而却把前来求教的年轻人给闹糊涂了。有人在想,正是因为我不懂数学,才要来这儿求教的呀,如果懂了,还来这儿做什么?正在人们面面相觑,不知是退、是进的时候,欧几里得从人群中走了出来,只见他整了整衣冠,看了看那块牌子,然后果断地推开了学园大门,头也没有回地走了进去。   “柏拉图学园”是柏拉图40岁时创办的一所以讲授数学为主要内容的学校。在学园里,师生之间的教学完全通过对话的形式进行,因此要求学生具有高度的抽象思维能力。数学,尤其是几何学,所涉及对象就是普遍而抽象的东西。它们同生活中的实物有关,但是又不来自于这些具体的事物,因此学习几何被认为是寻求真理的最有效的途径。 欧几里得 柏拉图甚至声称:“上帝就是几何学家。”遂一观点不仅成为学园的主导思想,而且也为越来越多的希腊民众所接受。人们都逐渐地喜欢上了数学,欧几里得也不例外。他在有幸进入学园之后,便全身心地沉潜在数学王国里。他潜心求索,以继承柏拉图的学术为奋斗目标,除此之外,他哪儿也不去,什么也不干,熬夜翻阅和研究了柏拉图的所有著作和手稿,可以说,连柏拉图的亲传弟子也没有谁能像他那样熟悉柏拉图的学术思想、数学理论。经过对柏拉图思想的深入探究,他得出结论:图形是神绘制的,所有一切现象的逻辑规律都体现在图形之中。因此,对智慧的训练,就应该从图形为主要研究对象的几何学开始。他确实领悟到了柏拉图思想的要旨,并开始沿着柏拉图当年走过的道路,把几何学的研究作为自己的主要任务,并最终取得了世人敬仰的成就。 最早的几何学兴起于公元前7年的古埃及,后经古希腊等人传到古希腊的都城,又借毕达哥拉斯学派系统奠基。在欧几里得以前,人们已经积累了许多几何学的知识,然而这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之间、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。因此,随着社会经济的繁荣和发展,特别是随着农林畜牧业的发展、土地开发和利用的增多,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓,成为科学进步的大势所趋。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,已敏锐地察觉到了几何学理论的发展趋势。他下定决心,要在有生之年完成这一工作。为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的初衷。在此地的无数个日日夜夜里,他一边收集以往的数学专著和手稿,向有关学者请教,一边试着著书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。 《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作。传到今天的欧几里得著作并不多,然而我们却可以从这部书详细的写作笔调中,看出他真实的思想底蕴。   全书共分13卷。书中包含了5条“公理”、5条“公设”、23个定义和467个命题。在每一卷内容当中,欧几里得都采用了与前人完全不同的叙述方式,即先提出公理、公设和定义,然后再由简到繁地证明它们。这使得全书的论述更加紧凑和明快。而在整部书的内容安排上,也同样贯彻了他的这种独具匠心的安排。它由浅到深,从简至繁,先后论述了直边形、圆、比例论、相似形、数、立体几何以及穷竭法等内容。其中有关穷竭法的讨论,成为近代微积分思想的来源。仅仅从这些卷帙的内容安排上,我们就不难发现,这部书已经基本囊括了几何学从公元前7世纪的古埃及,一直到公元前4世纪——欧几里得生活时期——前后总共400多年的数学发展历史。这其中,颇有代表性的便是在第1卷到第4卷中,欧几里得对直边形和圆的论述。正是在这几卷中,他总结和发挥了前人的思维成果,巧妙地论证了毕达哥拉斯定理,也称“勾股定理”。即在一直角三角形中,斜边上的正方形的面积等于两条直角边上的两个正方形的面积之和。他的这一证明,从此确定了勾股定理的正确性并延续了2000多年。《几何原本》是一部在科学史上千古流芳的巨著。它不仅保存了许多古希腊早期的几何学理论,而且通过欧几里得开创性的系统整理和完整阐述,使这些远古的数学思想发扬光大。它开创了古典数论的研究,在一系列公理、定义、公设的基础上,创立了欧几里得几何学体系,成为用公理化方法建立起来的数学演绎体系的最早典范。照欧氏几何学的体系,所有的定理都是从一些确定的、不需证明而礴然为真的基本命题即公理演绎出来的。在这种演绎推理中,对定理的每个证明必须或者以公理为前提,或者以先前就已被证明了的定理为前提,最后做出结论。这一方法后来成了用以建立任何知识体系的严格方式,人们不仅把它应用于数学中,也把它应用于科学,而且也应用于神学甚至哲学和伦理学中,对后世产生了深远的影响。尽管欧几里得的几何学在差不多2000年间,被奉为严格思维的范例,但实际上它并非那么完美。人们发现,一些被欧几里得作为不证自明的公理,却难以自明,越来越遭到怀疑。比如“第五平行公设”,欧几里得在《几何原本》一书中断言:“通过已知外一已知点,能作且仅能作一条直线与已知直线平行。 ”这个结果在普通平面当中尚能够得到经验的印证,那么在无处不在的鐾鸱球面之中(地球就是个大曲面)这个平行公理却是不成立的。俄国人罗伯切夫斯基和德国人黎曼由此创立了球面几何学,即非欧几何学。  欧几里得不仅是一位学识渊博的数学家,同时还是一位有“温和仁慈的蔼然 拉斐尔名画《雅典学派》中的欧几里得 长者 ”之称的教育家。在著书育人过程中,他始终没有忘记当年挂在“柏拉图学园”门口的那块警示牌,牢记着柏拉图学派自古承袭的严谨、求实的传统学风。他对待学生既和蔼又严格,自己却从来不宣扬有什么贡献。对于那些有志于穷尽数学奥秘的学生,他总是循循善诱地予以启发和教育,而对于那些急功近利、在学习上不肯刻苦钻研的人,则毫不客气地予以批评。在柏拉图学派晚期导师普罗克洛斯的《几何学发展概要》中,就记载着这样一则故事,说的是数学在欧几里得的推动下,逐渐成为人们生活中的一个时髦话题(这与当今社会截然相反),以至于当时托勒密国王也想赶这一时髦,学点儿几何学。虽然这位国王见多识广,但欧氏几何却在他的智力范围之外。于是,他问欧几里得“学习几何学有没有什么捷径可走?”,欧几里得严肃地说:“抱歉,陛下!学习数学和学习一切科学一样,是没有什么捷径可走的。学习数学,人人都得独立思考,就像种庄稼一样,不耕耘是不会有收获的。在这一方面,国王和普通老百姓是一样的。” 从此,“在几何学里,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。   欧几里得是人类科学思想史上的一盏指路明灯。他第一次使数学理论系统化,并使几何学逐渐成为一门独立发展的正式学科体系。他对数学史上的许多疑难命题和定理做了开创性的论证和解释,为数学的发展打下了坚实的理论基础,而他在理论中存在的缺憾,也成为后人攀越智慧高峰不可缺少的台阶。这一正一反都推动了人类数学思想的进步,从而为后来人类能更好、更深刻的认识自然界提供了更为有效的工具。因此,后人尊称他为“几何学之父”,以铭记他在数学思想发展中的卓越贡献。   我们已无法考察欧几里得的生世,只知道他给这个世界上留了一本书与两句话,其中一句话是面对一位青年关于几何学的问题,这个青年问:你的几何学有何用处。他的回答是:“请给这个小伙子3个硬币,因为他想从几何学里得到实际利益。”由此可知,欧几里得也是一位伟大的哲学家!
他死了。
亚历山大里亚的欧几里得(希腊文:Ευκλειδη? ,约公元前330年—前275年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人. 欧几里德 - 辉煌成就欧几里德主要成就欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements)共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。《几何原本》作为教科书使用了两千多年。在古今中外成文的教科书之中,无疑它是最成功的。欧几里德的杰出工作,使以前类似的论述黯然失色。《几何原本》问世之后,很快取代了以前所有的几何教科书。《几何原本》是用希腊文写成的,后来被翻译成多种文字。它一直以手抄本流传了上千年,而首次印刷出版于1482年,即哥登堡发明活字印刷术30多年之后。自那时以来,《几何原本》出了上千种不同的版本,广为流传和普及,以至在19世纪成为中学教科书。突出贡献欧几里得将公元前7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少著作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何著作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学著作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体结果。还有一些著作未能确定是否属于欧几里得所著,而且已经散失。欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。

文章TAG:欧几里得几何攻略104  带角标的欧几里德范数怎么求  欧几里得  欧几里得几何  几何  

相关文章

  • 英雄联盟s12总决赛时间,s12决赛lpl

    英雄联盟s12比赛时间介绍全球总决赛时间列表英雄联盟s12全球总决赛的比赛时间是什么时候?英雄联盟s12比赛时间英雄联盟s12比赛时间为2022年9月25日。英雄联盟s12全球总决赛开始时间为2022年9月25日,以官方公布日期为准,lcs联赛负责人chrisgreeley在夏季季后赛新闻发布会上宣布,S12总决赛将由北美接手,在北美四个城市举行。lols12赛程日程安排如下:1。入围:9月30日-10月3日4:00。10月4日-10月5日两点。2.小组赛:10月8日-10月11日5:00。10月14日-..
  • 方舟生存进化手游怎么设置开枪,葡萄游戏厅cf枪战手游怎么设置按键

    葡萄游戏厅cf枪战手游怎么设置按键2,手机版方舟生存怎样开枪3,方舟生存进化怎么生火4,方舟生存进化手机版里面怎么开启伤害预制5,游戏里怎么自己走路和自己开枪呢不受控制6,方舟生存进化手游操作设置具体怎么操作7,方舟生存进化操作详细一点8,天龙八部手游怎么操控人物游戏操作模式介绍9,最强NBA手游操作模式的更改方法按键怎样改1,葡萄游戏厅cf枪战手游怎么设置按键下蹲、跳跃,你点击相应的位置,然后输入按键,就可以使用快捷下蹲、跳跃了呀键盘移动的,你从我的游戏那里,点击CF图标进入游戏就好了望采虚幻2,手..

猜你喜欢

关于帝一应用 | 联系方式 | 发展历程 | 版权声明 | 下载帮助(?) | 广告联系 | 网站地图 | 友情链接

Copyright 2011-2022 帝一应用 www.diyiapp.com All Rights Reserved. 晋ICP备2023025288号-1

帝一应用所有资源均来自用户上传和网络收集整理,版权归原公司及个人所有。如有版权问题,请及时与我们网站编辑和QQ联系,我们在第一时间予以删除,谢谢!
本站点为非赢利性网站 不接受任何赞助和广告