求12x分之一的不定积分要求有步骤∫dx/[1+√(2x)]令u=√x,du=1/2√xdx→2∫u/(1+√2u)du=2/√2*∫(√2u+1-1)/(√2u+1)du=√2*∫[1-1/(√2u+1)]du=√2*∫du-√2∫du/(√2u+1)=√2*∫du-√2*∫d(√2u+1)/(√2u+1)*1/√2=√2u-ln(√2u+1)+C=√2*√x-ln(√2*√x+1)+C=√(2x)-ln[√(2x)+1]+C2,计算1122115211100(1-1/2^2)(1-1/3^2)(1