xx1x2dx求解答过程∫(x+|x|)dx/(1+x2)【1】当x≤0时,|x|=-x此时,∫(x+|x|)dx/(1+x2)=∫0dx=c(c为常数)【2】当x>0时,|x|=x,此时,∫(x+|x|)dx/(1+x2)=∫2xdx/(1+x2)=∫d(1+x2)/(1+x2)=ln(1+x2)+c(c为常数)2,求dxx1ln2x的步骤∫xln(x2+1)dx=(1/2)∫ln(x2+1)dx2=(1/2)[x2ln(x2+1)-(x2-ln(x2+1))]+C=(1/2)(X2+1)ln